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Flow of a conducting fluid along the annular channel between two non-conducting 
circular cylinders is examined by a numerical method for concentric and 
eccentric cases. Solutions have been obtained for Hartmann numbers ranging 
from 0.1 to 40 and, for some of these, details of velocity distribution and of 
induced current are given. The results obtained enable the development of the 
patterns of velocity and of current flow to be traced as the Hartmann number 
increases. The details of the development of the current flow patterns for 
eccentric cylinders are particularly interesting and are discussed in detail. At 
the higher values of Hartmann number studied the solutions are in excellent 
agreement with the results of Todd’s (1967) high Hartmann number analysis 
and it is possible to determine at  what value of Hartmann number Todd’s 
analysis becomes applicable within a specified accuracy. The effect of eccentri- 
city of the cylinders on the flow rate at a fixed pressure gradient is shown to 
diminish rapidly with increasing Hartmann number. The net flow of current 
around the annulus, which occurs when the cylinders are eccentric, has a maxi- 
mum value for each case studied at a Hartmann number of 3, approximately. 

1. Introduction 
The pressure-driven flow of a conducting fluid along the annular channel 

between two non-conducting circular cylinders in the presence of a transverse 
magnetic field has been analysed by Todd (1967) for the case of large Hartmann 
number. Todd’s analysis indicated the existence of essentially four regimes in the 
flow; Hartmann layers on the boundaries of the cylinders, ‘obscure regions’ in 
the neighbourhood of the points on the boundaries where the applied field is 
tangential to the boundary, core regions in which the velocity is uniform and 
transition regions or ‘wakes ’ dividing the core regions in the neighbourhood of 
the planes parallel to the applied field and tangential to the inner cylinder. 

From its nature, Todd’s analysis is valid only for large Hartmann number and 
it is of considerable interest to determine how the velocity distribution and the 
current flow pattern at small Hartmann number develop into their asymptotic 
forms and also to determine what value of the Hartmann number must be 
attained for the large Hartmann number analysis to be applicable. Uflyand 
(1961) pointed out that, when the cylinders are concentric, the exact solution 
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may be obtained in the form of infinite series and it would be possible to extract 
from this solution, numerically, the kind of information mentioned above. 
However, the infinite series involve modified Bessel functions and the computa- 
tional effort required to produce detailed information from the solution is large 
even for small values of Hartmann number. For larger values of Hartmann 
number the series becomes very inconvenient for computation, as Gold (1962) 
found in the simpler case of flow through a circular pipe. 

In  view of the above difficulties it was considered that it would be more efficient 
even for the case of concentric cylinders, to produce the information required 
by direct numerical solution of the governing equations rather than by numerical 
evaluation from the series solution. Further, the direct numerical solution could 
be applied with relatively small increase in difficulty to the case of eccentric 
cylinders for which no exact solution is available. This paper describes the method 
developed for numerical solution of the governing equations and presents some 
detailed results of solutions for concentric and eccentric cylinders for values of 
Hartmann number up to 40. The solutions at the higher values of Hartmann 
number are in close agreement with the results from Todd’s analysis for large 
Hartmann number. 

2. The governing equations and boundary conditions 
The governing equations for unidirectional flow of a viscous incompressible 

conducting fluid perpendicular to a uniform applied magnetic field (Shercliff 
1953) are 

The notation is the same as that of Todd (1967); p ,  y and A are the fluid pressure, 
dynamic viscosity and magnetic diffusivity respectively, ,u the (absolute) 
magnetic permeability, -P = ap/az = constant, and B = (Bo, 0, B2), where B, 
is the applied magnetic field. The only component of the fluid velocity is V,. 
Here B, is the stream function for current, i.e. current flows along the curves 
B, = constant. 

The problem considered is the case of pressure-driven flow through the annular 
channel between two insulating circular cylinders of radii a, b (b  > a).  The centres 
of the cylinders are eccentric by an amount y(0  < y < b-a)  (figure 1). In  all 
cases studied, the relative displacement of the cylinders was parallel to the 
direction of B,.t 

t Todd (1967) inferred that, for large Hartmann number, the only effect of relative 
displacement of the cylinders in the direction perpendicular to B, is to shift the patterns 
of V ,  and B, in that direction. In  view of this result it was decided not to consider cases 
with such displacement in order to obtain as much detail as possible about the effects of 
displacements in the B, direction, within the relatively restricted budget of computer 
time available. 
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The velocity V,  must vanish at  the cylinder boundaries. B, may be assumed 
to vanish on the outer boundary and, on the inner boundary, B, must take a 
constant value, say B,,. Todd (1967) has pointed out that B,< = PI, where I 
is the net amount of current flowing around the annulus per unit length and he 
showed that B,, is zero for all Hartmann numbers when y = 0, whether or not 
the cylinders are displaced in the direction perpendicular to B,. He also showed 
that, for Hartmann numbers $ 1,I + 0 if y + 0. While it has not been proved 
that I =+ 0 if y + 0 for all Hartmann numbers, all the numerical solutions 
obtained do give this result. 

FIGURE 1. Notation. 

Since the conditions of the problem are invariant with time, 

curl E = -aB/at = 0, 

where E is the electric field strength and, hence, for any closed circuit 

E.ds  = 0. (4) f 
If the circuit is the boundary of the inner cylinder, this condition becomes 
(Hasimoto 1960) 

For the purposes of numerical solution it is convenient to reduce the equations 
and boundary conditions to dimensionless form. There are several possible ways 
of doing this, but the most suitable set of dimensionless variables for the problems 
considered here are x' = x/a, y' = y/a, V = E(B,a*$/aP), B = B,(B,/paP), 
in which (r is the electrical conductivity of the fluid. Equations (1) and (2) 

av 
ax 

become, 
1M-'V2B-I--, = 0, 

14-2 
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where and 

the Hartmann number based on the radius of the inner cylinder. If the radius 
of the inner cylinder is chosen to be unity, the primes can be dropped from the 
space variables without danger of confusion and this will be done in the remainder 
of the paper. 

Introduction of the auxiliary variables, 

m = V + ( x + B ) ,  n = V - ( x + B ) ,  (8), (9) 

enables (6), (7) to be decoupled, giving: 

V2m + M (amlax) = 0, 

3. Numerical solutions 
Concentric cylinders 

For the case of concentric cylinders the numerical solution of (10) and (1 1) can 
proceed in a straightforward manner. The boundary conditions on both inner 
and outer cylinder are m = x, n = - x and (10) and (1 1) are solved separately. 
The chief difficulty arises from the boundary geometry and the manner of dealing 
with this is described in a later section. 

Eccentric cylinders 

When the cylinders are eccentric, the value of B on the inner cylinder is unknown, 
and must be found as part of the solution. The correct value of B is that which 
ensures that the solution satisfies the integral condition (4). Usually such a 
problem poses great difficulties for numerical solution, but, in this case, the 
linearity of the equations simplifies the problem. Solution is achieved by breaking 
the problem into two parts. Firstly, the equations (6), (7) are solved with bound- 
ary conditions B = 0, V = 0 on both inner and outer cylinder. The equations are 
solved in the decoupled form (10) and (1 1) and the problem is essentially the 
same as for the concentric case. Secondly, the equation (6) coupled with the 

(12) 
equation, 

is solved with boundary conditions B = 0, V = 0 on the outer cylinder and 
B = 1, V = 0 on the inner cylinder. Equations (6) and (12) are decoupled by use 
of the auxiliary variables 

giving a pair of equations identical in form to (lo), (1 1) with m1 and n, replacing 
m and n respectively. For each of these two cases the integral on the left of (4) 
is evaluated for a given circuit. If the value of the integral is respectively I, and 
12, the required solution which satisfies the boundary conditions and the integral 
condition (4) is given by the linear combination of the solutions of the first and 
second cases in the proportions 1 : k such that 

M - l V V +  (as/&) = 0, 

m1 = V + B ,  n, = ?‘--I?, (131, (14) 

I ,  + k12 = 0. (15) 
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The value of k given by (15) is the desired constant value of B on the inner 
cylinder. 

It is of interest to note that I, + 0. For if it is assumed that I, = 0, the result 
obtained by Todd (1967) in his consideration of the pair of equations (6) and (12) 
gives VB, = 0, whence B, = 0 on the inner cylinder. But this is in contradiction 
with the specified boundary condition B, = 1 on the inner cylinder and it follows 
that I ,  + 0.T 

Dealing with the boundary geometry 

In  the preceding sections it has been shown that the numerical solution of both 
the concentric and the eccentric case can be reduced to the problem of solution 
of equations of the form (10) and (11) with values of the dependent variables 
specified on the cylinder boundaries. Equations (10) and (1 1) are of elliptic type 
and the only significant difficulty in their numerical solution by finite difference 
techniques arises from the curved boundary geometry which leads to irregular 
mesh lengths if the solution is calculated in the xy-plane. This difficulty was 
overcome by use of the method of ‘symmetromorphic figures’ developed by 
Thom & Apelt (1961). The solution domain is mapped conformally on an 
auxiliary plane, the transformation being so chosen that the solution domain in 
the xy-plane maps on to the interior of a rectangle in the auxiliary plane and, 
equally important, it  is so arranged that the rectangle in the auxiliary plane is 
divided into an integral number of equal mesh lengths in both dimensions. 

If the transformation is given by the function w = f ( z )  where z = x + iy and 
w = $ + i$-, (lo), (1 1) are transformed into 

= 0, 

an 
V2 n-- cosa-+sina- = 0, 

an) $* a a$ a+ 
where Q = I dwldz I and a = arg (dwldz). 

The transformations used were 
w =  - r l n z  

(19) 
Z - K  

for the concentric case and w = - I’ In - -  
Z + K  

for the eccentric case. In  each case the appropriate function maps the annular 
region between the cylinders, with a cut placed along the negative x-axis, on to 
a rectangular region in the w-plane. If the relative magnitudes of the dimensions 
a, b and y in the z-plane were specified in advance, it would in general be possible 
to subdivide each dimension of the rectangular region in the w-plane into an 
integral number of equal mesh lengths only by using different mesh lengths for 
the two directions. However, it  is possible to achieve a solution domain in the 
w-plane which can be subdivided integrally by a square mesh by specifying the 
proportions of the rectangle in the w-plane and accepting the proportions pro- 

? The author is indebted to a reviewer for drawing attention to this proof. 
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duced by the transformation in the x-plane. For the concentric case the solution 
domain in the w-plane was arranged to be a rectangle with sides in the ratio 8 to 1 .  
This gave cylinders in the x-plane whose radii are in the ratio 2.193 to 1. For the 
eccentric case the values of the parameters in the transformation, (19), were 
selected to give, to an acceptable approximation, the same ratio of radii as for 
the concentric case for a number of different eccentricities, while still mapping 
a rectangle in the w-plane which could be subdivided integrally by a square mesh. 
The proportions of the several cases studied are given in table 1.  

ria 
0 
0.0752 
0.1209 
0.3867 
0.5543 
0.1144 
1~0000 

bla 
2.193 
2.196 
2.201 
2.199 
2.191 
2.186 
2.186 

Ratio of sides of 
rectangle 

8 
8 
8 

9 
8% 

log 
143 

TABLE 1. Proportions of channels for which numerical 
solutions have been obtained. 

Solution of the difference equations 

The equations (16), (17) were converted into finite-difference relations, and the 
set of simultaneous algebraic equations produced by writing the difference 
equation at each interior mesh point of the solution domain was solved by an 
iterative procedure which was proposed by Russell (1962) as being the best 
method for solving finite-difference equations of the type involved. Russell 
designated the method ‘successive optimum displacement by points ’. At the rth 
iteration the value of the function rn at each mesh point is obtained from 

rnW j, k - - ( - @ j , k )  mrkl) + $@j,k [( 1 - Aj,k) m;’?1,k + (1 + Aj,k)myfi:)k 

+ (1  - Bj, k) r n y k -  1 + (1 + Bj,k) mKi:’1], (20) 

#j,k = 2 [ 1 + (4 [A;, f B:, k + nz(u-’ f v-2)]]4]-1y (21) 

in which Aj,k = Mhcosaj,,/2Qj,,; Bj,k = Mhsinaj,k/2Qj,,; his the mesh length, 
subscriptsj, k are the mesh co-ordinates corresponding to the q5 and $dimensions 
respectively, and u and v are the number of intervals of the mesh along the two 
sides of the rectangular domain in which the solution is being calculated. The 
equation for the function n is similar to (20) except that the signs preceding the 
coefficients A and B are everywhere reversed. The iterative process defined by 
(ZO), (21) differs from that designated by Young (1954) as successive over- 
relaxation in that w is here a function of q5 and $ and may be less than 1, depend- 
ing on the values of A and B. In  the special case, A = B = 0 (16), (17 )  become 
Laplace’s equation and the iterative process of ( Z O ) ,  (21) becomes identical to 
that of successive over-relaxation (SOR). The iterative process proved to be very 
efficient over a wide range of values of A and B. 
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Control of accuracy of solution 

The iterations were stopped when residuals in the difference equations corre- 
sponding to (16) and (17) were everywhere less than times the order of 
magnitude of m and n in the solution. In  a preliminary study it was found that, 
when each cycle of iteration progressed in the same direction from one end of the 
solution domain to the other, a significant bias was introduced into the solution. 
This bias was eliminated when the sequence of iteration was so arranged that, 
for each cycle, the iteration proceeded simultaneously from opposite ends of the 
solution domain in opposite direction. 

A number of checks of the accuracy of the values of V and B as produced from 
the solutions for m and n was conducted, as follows: (i) The values of V and B 
were substituted into the finite difference equivalents of (6) ,  (7) for each mesh 
point and the residuals evaluated. The maximum and the overall average values 
of the residuals were determined. (ii) The overall force balance between the 
pressure gradient forces, electromagnetic forces and viscous shear forces for the 
whole flow cross-section was checked. (iii) For the case of eccentric cylinders, the 
integral on the left of (4) was evaluated for two different circuits enclosing the 
inner cylinder, one being a circle which was located approximately half-way 
between the inner and outer cylinders and the other being the inner cylinder 
itself. (iv) The solution at  each value of Hartmann number was obtained for 
several different intervals of subdivision of the mesh. For the concentric case, 
the solution was obtained for three different mesh lengths and for the eccentric 
case two mesh lengths were used. It was intended initially that a process such as 
the ‘deferred approach to the limit’ due to Richardson & Gaunt (1926) would be 
employed to extrapolate to the case of vanishingly small mesh length but 
experience with the concentric case indicated that this would be of dubious value 
in the present context. However, the solutions at  the different mesh lengths did 
permit an estimate to be made of the accuracy of the integral results obtained 
from them. 

Poiseuille flow 

For the limiting case of M = 0 which corresponds to Poiseuille flow, the problem 
reduces to the solution of the equation 

= -P. (22) 

For the eccentric case this equation was solved numerically. The occurrence of 
irregular mesh lengths was avoided by use of the method of ‘symmetromorphic 
figures’ in exactly the same manner as described for the Hartmann flow solutions. 
Otherwise, the numerical procedure employed standard methods of SOR and 
does not warrant detailed discussion here. 
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4. Results obtained 
Numerical solutions were obtained for values of Hartmann number 0,0.1,  1 ,5 ,  

10,20 and 40 for the concentric case and for the five different eccentricities given 
in table 1. A t  the finest subdivision of the mesh the gap between the inner and 
outer cylinder was divided into thirty-two intervals in the concentric case and 
between sixteen and twenty intervals in the eccentric cases. A t  M = 40 the 
thickness of the boundary layers at  their narrowest part had shrunk to a dimen- 
sion comparable to these mesh lengths, and accurate solutions for M > 40 could 
be obtained only by using finer subdivision of the mesh in the region of the 

0.2 I I I I 0.2 I I I 

FIGVRE 2. (a) Velocity profiles for concentric cylinders at  0 = 0". ___ , numerical solu- 
tion; x , , 0 ,  values calculated from large Hartmann number analysis for M = 10, 
20 and 40 reepectively. ( b )  Velocity profiles for concentric cylinders at 0 = 90'. -, 
numerical solution; x , , 0 ,  values calculated from large Hartmann number analysis 
for M = 10, 20 and 40 respectively. 

boundary layers. However, at M = 40 the solutions already displayed all of the 
features of the high Hartmann number solution obtained by Todd (1967) and it 
is considered that there is little to be gained from obtaining numerical solutions 
for values of M > 40. 

4.1. Concentric cylinders 

A selection of the results obtained is presented in the accompanying figures. 
Velocity profiles along radial sections at  8 = 0" and 90" for the concentric 
case are shown in figures 2 (a)  and ( b )  respectively. The velocity, E, is plotted as 
the dimensionless form ~ q / u z P .  The axial symmetry of the Poiseuille flow 
( M  = 0 )  is destroyed by the application of the transverse magnetic field. From 
the velocity profiles of figures 2 it can be seen that the distortion of the Poiseuille 
flow is quite small for M < 1, but that as M is increased beyond 1 the velocity 
distribution is completely changed by the effects of the electro-magnetic forces. 
A t  M = 20, is almost constant across most of the section at  8 = 0" and Hart- 
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mann boundary layers have developed near each cylinder wall. As M is increased 
to 40 there is relatively little change in the shape of the velocity profiles except 
that the boundary layers have become thinner. For a specific channel with a fixed 
pressure gradient driving the flow the velocity profiles show how V,  is reduced in 
magnitude as the applied magnetic field B, is increased in strength. At M = 40 
the maximum velocity at  B = 0" is only 0-084 of the maximum value for the 
Poiseuille flow. Some values of Y,  have been calculated from Todd's solutions for 
the core flows for M B 1 and are plotted in figures 2(a)  and ( b ) .  At B = 0", 
figure 2 (a) ,  the velocity distribution given by the numerical solution has ap- 

0.04 

0.02 

- 0.04 

-0.06 
1.0 1 3 2.0 

r la 
FIGURE 3. Distribution of induced magnetic field for concentric cylinders at B = 0". 
---, numerical solution; x , 0, 0, values calculated from large Hartmann number 
analysis for M = 10, 20 and 40 respectively. 

proached closely to the asymptotic result over approximately half of the flow 
passage at  M = 10, and at  M = 20 and 40 the two solutions are virtually indis- 
tinguishable except in the region of the boundary layers, to which the asymptotic 
core solution does not apply. The comparison between the two solutions at  
B = go", figure 2 ( b ) ,  shows that close agreement is not reached until M - 20, and 
that at  M = 40, while the two solutions are indistinguishable over a large pro- 
portion of the flow passage, the regions near the boundaries to which the asymp- 
totic core solution does not apply are more extensive than for the section at 
B = 0'. This result is consistent with Todd's solution for M 9 1. He found that 
'obscure ' regions exist in the region I in - I 8 I I N M 4 near each cylinder, the 
thickness of the obscure regions being 0 (aM-3) and 0 (bM-8) a t  the inner and 
outer cylinder respectively (see also Waechter 1968). In these regions, neither 
the boundary layer solution nor the core solution applies. 

The distribution of induced magnetic field along the radial section at 0 = 0" 
for the concentric case is shown in figure 3. B, is plotted as the dimensionless form 
B,$lpa2Pd. The profiles show that, as the Hartmann number increases, 
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regions of linear distribution of B, develop in the centre of the flow and become 
more extensive, ultimately occupying all the cross section except for narrow 
regions near each boundary, corresponding to the boundary layers referred to 
above. For a specific channel with a fixed pressure gradient the profiles of figure 3 
show that the maximum absolute value of B, first increases with increasing value 

B,7&/pa2PrJ v, 71a2P 
FIGURE 4. Distributions of velocity and of induced magnetic field for concentric 

cylinders at  M = 5 .  ---, current line B, = 0 at M = 1. 

B, q&/pa2Pa& v,7/a2P 
FIGTJRE: 6. Distribution of velocity and of induced magnetic field for concentric 

cylinders at  M = 20. 
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of B,, but then decreases as B, is further increased. Comparison is made between 
the values of B, obtained from the numerical solutions and from Todd's core 
solution for M >> 1 at 8 = 0" in figure 3. The distributions of B, given by the two 
solutions are virtually indistinguishable for M 2 20 except in the region of the 
boundary layers. 

The distributions of V,  and B, over the flow section of the concentric case are 
shown for M = 5 in figure 4 and for M = 20 in figure 5. Since is even in x and y 
and B, is odd in x and even in y, only one quarter of each distribution needs to 

0.1 - 

- -------- - _ _ _ _ _ _  
20 

0.05 - 

0 0.05 1.0 1 5  

Xla  or y la  

FIGURE 6. Velocity profiles for concentric cylinders showing development of core regions 
and of shear layers. -, profile along AB, - - -, profile along AG.  Proaes for different 
values of M are displaced vertically for greater clarity. The profiles are symmetrical about 
the z or y axis and only half of each is shown. 

be plotted. In  these figures contours of constant B, also represent current lines, 
as noted previously. A t  M = 5 (figure 4) the velocity contours show the beginnings 
of two regions of nearly uniform velocity corresponding to I y I < a and I y I > a. 
Following Todd (1967) these regions will be described as the inner core and the 
outer core respectively. At M = 20 (figure 5) the velocity contours show well 
developed core regions and the velocity increases from its low value in the inner 
core to the much larger value in the outer core across a region of relatively large 
transverse velocity gradient in the vicinity of I y 1 = a. This is the shear layer or 
'wake' described by Todd. It is still relatively diffuse at  M = 20t but becomes 

t This is to be expected since Todd showed that the wake thickness is small compared 
to a on~y  for M* 1. 
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narrower as M increases further. The Hartmann boundary layers near each 
cylinder wall are well developed at M = 20. The apparently anomalous shape of 
the velocity contour with value 0.03 results from the fact that it emerges from 
the boundary-layer region into the very nearly uniform core region near 6' = 0". 
The contour with value 0.025 is approximately at the edge of the boundary layer 
in this region. The maximum velocity gradient occurs near 8 = f 45" and f 135" 
in the boundary layer on the outer cylinder wall. The development of the core 
regions and of the shear layers are further illustrated in figure 6, where velocity 
profiles are plotted along sections across the core regions and the wake. The 
profiles across the outer core show that at  M = 40, is nearly independent of x 
(the solution for M $ 1 gives 

The pattern of current lines at  M = 5 ,  figure 4, is only slightly different from 
that at lower values of M .  (The current line corresponding to B, = 0 at M = 1, 
which is essentially concentric with the cylinders has been included in figure 4 
for comparison.) The chief points of interest in the pattern at M = 5 are the 
slight local maximum in I B, I near 8 = k 45" and & 135" and the current flow 
stagnation points at  8 = f 90°, where the current line, B, = 0, branches at  saddle 
points. However, by M = 20, the pattern of current lines, figure 5 ,  is in essential 
agreement with that obtained by Todd for M $ 1 except for the presence of the 
pronounced maximum in 1 B, I and the associated local maximum in boundary- 
layer current in the vicinity of 6' = f 45", f 135" near the outer cylinder bound- 
ary. Although not adverted to by Todd, this feature is implicit in his solution. 
The core velocity is proportional to the boundary layer current, as pointed out 
by Shercliff (1956), and, since the outer core velocity is approximately twice that 
in the inner core, the associated difference in the boundary-layer currents 
requires the existence of the pattern of current lines appearing in the upper part 
of figure 5 .  It is obvious from the foregoing that this feature must persist for 
M $ 1, undergoing only some modification in shape as the boundary layers 
become thinner. The presence of the maxima in 1 B, I at 6' = f 45", 5 135" causes 
the formation of saddle points in the distribution of B, at 8 = 0", 180" and stag- 
nation points in the current flow there. 

independent of x in the outer core.) 

4.2. Eccentric cylinders 
Some detailed results for one geometry of eccentric cylinders (y/a = 0.5543) are 
presented in figures 7-1 1. The solutions for other eccentricities are generally 
similar to those shown. The velocity distribution for the Poiseuille case, figure 7, 
shows pronounced asymmetry, the maximum velocity where the gap between 
cylinders is greatest being approximately five times as great as that where the 
gap is narrowest. The effect of the applied magnetic field is to make the velocity 
distribution progressively more and more like that for the concentric case as M 
increases, until at  M = 20, figure 8, the velocity distribution has become quite 
similar to that for concentric cylinders at  the same value of M (figure 5 ) ,  with the 
development of Hartmann boundary layers and of inner and outer core flows 
separated by shear layers. Todd (1967) found that the velocity distribution for 
eccentric cylinders is the same as for the concentric case for M % 1.  

The development of the current flow pattern as M increases, which is shown 
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in figures 9,10, 11 and 12 (b) is very interesting. For all values of M ,  some current 
flows right round the inner cylinder. In  the narrowest gap between the cylinders, 
at low values of M all the current flows in the direction of negative y, opposite 
to the direction of the induced e.m.f., as shown in figures 9 and 10 for M = 1 and 5 
respectively. However, as M increases and the core flows and Hartmann bound- 
ary layers develop, current flows in the direction of positive y in the core region 
of the narrow gap, returning through the boundary layers to form closed current 
loops. The details of the development of the current flow pattern, as M increases 
from low values, varies with the eccentricity of the cylinders. The value of M at 
which current begins to flow in the positive y direction in the central region of the 
narrow gap increases with y/a.  For y /a  = 0.0752 and 0.1209, this situation has 

0 005 0 0 0 

FIGURE 7. Distribution for eccentric cylinders ; Poiseuille case. Contours of V,v/a2P 
at intervals of 0.05. 

FIGURE 8. Distribution of velocity for eccentric cylinders at  M = 20. Contours of 
V,v/a2P at intervals of 0.01. 
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developed already at the smallest value of M considered (0.1); for y/a = 0.3867, 
it develops between 1 < M < 5; for y /a  = 0.5543, between 5 < M < 10; for 
y/a = 0.7744, between 10 < M < 20; and for y /a  = 1.0, it  has just begun to 
develop at  M = 40. The greater the eccentricity, the greater is the difference 
between the velocities in the wide and narrow gap for Poiseuille flow and, hence, 
the greater is the difference between the induced e.m.f. in these regions at' low 
values of M .  Initially, current flows in the narrow gap opposite to the direction 
of the local induced e.m.f., but the consequent differences in electromagnetic 
forces progressively reduces the differences in velocity in the two regions as M is 
increased and, in fact, initially the velocity in the narrow gap increases while the 

FIGURE 9. Distribution of induced magnetic field for eccentric cylinders at M = 1. Con- 
tours of B,pb/pa2Po* at intervals of 0.01. Value on inner boundary is 0.0504. 

FIGURE 10. Distribution of induced magnetic field for eccentric cylinders at M = 5 .  
Contours of B,q*/p2Pa* at intervals of 0.02. Value on inner boundary is 0.0526. 
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velocity in the wide gap decreases. Eventually a stage is reached when current 
can flow in the central part of the narrow gap in the general direction of the local 
induced e.m.f and, thereafter, the velocity in both gaps decreases with further 
increase in M .  

The current line pattern for M = 20 is shown in figure 11. This pattern is 
similar in many respects to that for the concentric case at  the same value of M ,  
figure 5, but there is the important difference that there is a net current flowing 
right around the inner cylinder. This feature has been explained by Todd (1967). 

. . .  

FIGURE 11. Distribution of induced magnetic field for eccentric cylinders at M = 20. 
Contours of R,~*/pa2Pu* at intervals of 0-01. Value on inner boundary is 0.0269. 
- x - x -, stagnation point current line, value 0.0267; - - - - , current line with same 
value as inner boundary. 

The excess current flowing up the wider core returns via the boundary layers of 
the narrower side. Todd suggested that this excess current would split equally 
between each boundary layer, but figure 11 shows that this is not necessarily the 
case. All that is required is that the current in each boundary layer of the inner 
core should be equal for M > 1 and this can be achieved in a number of ways. 
In the case shown in figure 11 all of the current flowing up the narrow inner core 
returns via the boundary layer on the inner cylinder, this boundary-layer current 
being slightly augmented by some current from the wide inner core, whereas most 
of the excess current from the wide inner core returns down the boundary layer 
on the outer cylinder. The presence of the regions of pronounced maxima in I B, I 
in the vicinity of t? = f 45", f 135" (already noted for the concentric case) gives 
rise to quite complicated current line patterns and some current flowing up the 
wider core loops almost right around the region of maximum 1 B, 1 before flowing 
down the boundary layer on the inner cylinder on the side of the narrower gap. 

Saddle-points occur in the distribution of B, at M = 20 for the eccentric 
cylinders of figure 11, in the vicinity of 0 = f 90" near the inner cylinder and at 
t? = O", 180" near the outer cylinder. At  the saddle-points a current line intersects 
itself and there is a stagnation point in the current flow. Part of the stagnation 
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point current line near 8 = 90" is shown in figure 11. The value of B, a t  the saddle 
points near B = f 90' and at  8 = 180' determine the way the excess current 
from the wide inner core divides between the boundary layers on the two 
cylinders. If Bad denotes the value on the boundary of the inner cylinder and 
B, (s90), B, (s180) the values at the saddle-points near 0 = 90' and at B = 180" 

- 
0 
0 

0 

I 

FIGURE 12. Current flow pattern at  M = 40. Contours of B,r,d/puzPc& at intervals of 
0.01. (a) y/u = 0.1209; - - - -, stagnation point current line, value 0-00298 is same as 
for inner boundary. (b) y/u = 0.5543; ----, stagnation point current line, value 
0.0137 is same as for inner boundary. (c) y/a = 0.7744; - x - x -, stagnation point 
current line, value 0.0175; - - - -, current line with same value as inner boundary, 
0.0191. 

respectively, then the proportion of the excess core current which passes directly 
to the boundary layer of the inner cylinder is (B,i-B,(s90)/B,i, and the 
remainder is forced out to the boundary layer of the outer cylinder by the 
presence of the maximum in 1 B, I near 8 = f 135". Some of this current later 
leaves the boundary layer of the outer cylinder and crosses the gap to augment 
further the boundary-layer current on the inner cylinder. The proportion of the 
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excess core current which follows this path is (B,(s90) -B,(s180))/Bz,. For the 
case shown in figure 11, Bzi = 0.0269, B,(s90) = 0.0267 and B,(s180) = 0.0218, 
in non-dimensional terms, and 2/269 of the excess core current passes directly 
to the inner cylinder boundary layer, 491269 is the additional amount which 
reaches the inner cylinder boundary layer after passing first to the outer cylinder 
boundary layer and 218/269 is the proportion which remains in the outer cylinder 
boundary layer at  6' = 180'. 

The current line patterns at  M = 40 for three eccentricities are shown in figure 
12. Comparison of the pattern at  M = 40 for y/a = 0.5543 (figure 126) with that 
at  N = 20 (figure 11) shows that, at  the higher value of M ,  the 'wakes' have 
become less diffuse and that now B,(s90) = = 0.0137, so that the current 
line which branches at 0 = 90" has the same value of B, as applies to the inner 
cylinder boundary. Hence, none of the excess current from the wide inner core 
can pass directly to the boundary layer of the inner cylinder and all of it is forced 
out first to the boundary layer of the outer cylinder. Since 

B,(s180) = 0.0128 < Bzi, 

some of the excess core current eventually leaves the outer cylinder boundary 
layer to cross the gap between the cylinders and augment the boundary layer on 
the inner cylinder. This proportion, 91128, is approximately one-third of the 
proportion which followed a similar path at M = 20. In  fact, it will follow from 
later discussion that, for this eccentricity, ultimately all of the excess core current 
remains in the boundary layer of the outer cylinder as M is increased indefinitely. 

The three current flow patterns of figure 12 show how eccentricity affects the 
relative magnitudes of BZi, B,(s90) and B,(s180). The sequence of current flow 
patterns for y/a = 0.5543 shows that ultimately B, (s90) becomes equal to BZi as 
M is increased indefinitely. The same development is observed in all the solutions 
calculated, the only effect on it of increasing eccentricity being to delay its 
completion to higher values of M .  ,Whereas B,(s90) = BZj at M = 40 for all 
values of y/a < 0.5543, this stage has not yet been reached at  M = 40 for larger 
eccentricities. For example, at  M = 40, yla = 0.7744, B,(s90) = 0.0175 and 
BSi = 0.0191. However, there is no apparent reason why the observed trend of 
B, (s90) -+ Bzt as M increases will not continue until the two values are equal and 
it is considered that, for all eccentricities studied here, the ultimate current flow 
pattern for M + 1 will be similar to those for y/u 6 0.5543 in this respect, that 
all of the excess core current is forced out to the boundary layer of the outer 
cylinder. Whether all of this current remains in the outer cylinder boundary 
layer or whether some returns across the gap to the inner cylinder boundary 
layer depends on whether B,(s180) > or < BZi, and this, in turn, depends on the 
eccentricity, even when M B 1. It has been observed in an earlier section that, 
for M 9 1, the currents in each boundary layer of the inner cores must be equal 
and the distribution of B, in the cores is linear in x. If the thickness of the 
boundary layers is neglected these considerations lead to the result that 
B,,/Bs(s180) = 2y/(b-a) for M 1. Hence, when y < +@-a), B,(slSO) > Bzi 
and all the excess current from the wide inner core remains in the outer cylinder 
boundary layer but, when y > +(b - a) ,  a proportion of the excess current, viz. 
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(Bai - 3, (s180))/Bzi, ultimately reaches the boundary layer of the inner cylinder 
in the manner described above. The critical value of y/a for the cylinders con- 
sidered lies between 0-59 and 0.60. The points discussed are illustrated by the 
patterns of figure 12. For y /a  = 0.1209, Bzi = 0.00298, B,(s180) = 0.01250 at 

I I I I 1 I I I 
AL / .  

0 10 20 30 40 
0 

Hartmann number, M 
F I O ~ E  13. Flow rates for concentric and eccentric cylinders. po denotes Poiseuille flow 
rate and q M  denotes Hartmann flow rate. ---, concentric cylinders; 0 ,  f ', x , . j  , i, 
y/cc = 0.1209, 0.3867, 0.5543, 0.7744 and 1.0000, respectively. 

M = 40. The case of y/a = 0.5543, which has been discussed above, is so close to 
the critical that the final pattern in which all the excess core current remains in 
the outer cylinder boundary layer is reached only for M in excess of 40. For 

The dependence of flow rate on M is shown for the concentric case and the 
Y / U  = 0.7744, Bzi = 0.0191, BZ(s180) = 0.0124. 
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eccentric cases studied in figure 13. The flow rate is plotted as the ratio of the 
Poiseuille flow for concentric cylinders to the actual flow for the given geometry 
at  the same pressure gradient. At M = 0, corresponding to Poiseuille flow, 
figure 13 illustrates the well known result that eccentricity of the inner cylinder 
gives an increased flow rate for a given pressure gradient. However, the effect 

- 
1- - 
- - 
- - 
- - 

lo-'- I I 1 t I l l t l  I I 1 I 1 1 1 1 1  I I I I I I l l , '  

of an applied transverse magnetic field is both to reduce the flow rate and also 
to reduce the effect of eccentricity on flow rate, and for M >' 20 all geometries give 
very nearly the same flow rate as the concentric case at the same pressure gradient. 
At M = 20, the flow rate for the maximum eccentricity studied is only 1-7 per 
cent greater than that for the concentric case. All curves of figure 13 become 
asymptotic to the one straight line, and for M > 20 the flow rate has become 
inversely proportional to M within a very good accuracy. The constant of pro- 
portionality depends only on the ratio bfa. From figure 13 the slope of the straight 
line asymptote is 0-1027 as compared to the value 0.1039 calculated from Todd's 
result for M > 1. 

16-2 
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The dependence of the value of Bzj on the boundary of the inner cylinder on 
eccentricity and on Hartmann number is shown in figure 14, Bai being combined 
with the eccentricity, y, in the dimensionless quantity Bz$/,uayPa~. As pointed 
out in an earlier section, BziJ,u equals the net amount of current flowing around 
the annulus per unit length. At low Hartmann numbers the curves for the 
different eccentricities are different but they all appear to be asymptotic as 
M -+ 0 to a line of unit slope on the log-log plot, indicating that, for M < 1, the 
current looping the annulus is proportional to M ,  the constant of proportionality 
being a function of the eccentricity. For each geometry the maximum current 
looping the annulus is generated at a Hartmann number very close to 3 . t  For 
larger values of M ,  the curves for the different eccentricities collapse together 
and become asymptotic to a line of slope, - 1, corresponding to the relationship, 

which applies for all eccentricities and is the same as the result obtained by Todd 
(1967) for M 9 1. At  M = 20, the results for all cases fall in a range of 1.8% and 
the result for the maximum eccentricity has approached to within 4.7% of the 
value given by the asymptotic expression (23). 

5.  Some details of accuracy of computations 
The excellent agreement between the numerical solutions for the larger values 

of M and the results of Todd's solution for M 9 1 is strong evidence for the 
accuracy of the numerical solutions. A number of tests of the accuracy of the 
numerical solutions was carried out during computation as described in § 3. Some 
results of these are summarized here. 

When the values of V and B obtained from the numerical solution on the finest 
mesh were inserted into (6) and (7) the maximum residuals were found to be 
between 10V and times the order of magnitude of V and B. For coarser mesh 
lengths the residuals were found to vary approximately as h4. 

The integral checks on the overall force balance, described in 5 3, gave agree- 
ment within 0.05% for M < 5, 0.5% at M = 10, 1% at M = 20 and 2% at 
M = 40. The check on Bzi gave essentially similar results. The calculation of 
both integral checks involves quantities which are the small differences between 
much larger quantities and this feature becomes more pronounced at  larger 
Hartmann numbers, probably giving rise to an over-estimate of errors in the 
integral checks. 

6. Conclusion 
The numerical solutions of Hartmann flows at  low to moderate Hartmann 

numbers show how the patterns of velocity and of current flow in annular 
channels develop as M increases. The details of the development of current flow 

t It would bo interesting to locate the maxima more precisely, in view of the result 
(Todd 1966), for the simple case of Hurtmann flow between parallel planes, that the 
maximum power is developed from such a magnetohydrodynamic generator a t  M = 3.0. 
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pattern for eccentric cylinders are particularly interesting and the effects of 
varying eccentricity on all significant features of the patterns have been deter- 
mined. 

For the geometries studied the solutions begin to display the essential features 
of the high Hartmann number flow at Hartmann numbers between 10 and 20, 
and at  M = 40 the numerical solutions for channels with eccentricities 
0 < r / a  6 0.5543 are virtually indistinguishable from the results of the high 
Hartmann number analysis except that the ‘wakes ’ are still relatively diffuse. 
For larger eccentricities such close agreement with the high Hartmann number 
analysis would be reached only for M > 40. 

The numerical method developed for solution of Hartmann flows has proved 
to be efficient at  Hartmann numbers in the range 0.1 < M < 40 and the excellent 
agreement between the results of the numerical solution at  large values of M 
and the results of the high Hartmann number analysis gives solid ground for 
confidence in the application of the numerical method to problems for which 
there are, as yet, no analytical solutions available. 
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